If it's not what You are looking for type in the equation solver your own equation and let us solve it.
98x^2+28x+1=0
a = 98; b = 28; c = +1;
Δ = b2-4ac
Δ = 282-4·98·1
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-14\sqrt{2}}{2*98}=\frac{-28-14\sqrt{2}}{196} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+14\sqrt{2}}{2*98}=\frac{-28+14\sqrt{2}}{196} $
| 0.4(x+3)=4 | | -5x-161=99-15x | | 62.50*0.18=x | | -66-6x=62-10x | | 1/5g+3=9 | | 4^3x-1=8^x+4 | | 1/5g=9 | | 2=(-9x+21)-5 | | 1/2x=-17 | | -3/4v+4/5=7/8 | | t-9.95=5.45 | | 5.1+d=14.2 | | X^2-9x+11x+12=180 | | (6x-35)(4x+11)=x | | 1×+12+5y+7+40=180 | | 12-a/7=-2 | | 4/y+2/y=3 | | 18-6x=33+x | | -60-6x=42-3x | | 0=6/16y-42 | | 8y-15=6y-6 | | 50x+75=25x+70 | | $0.90x=$13.50 | | 4/x+5/4x-1/4=5 | | 3(0)-8y=0 | | 52=(h/12) | | 3(4x-2)=9x+x | | 4(y+7)=16 | | 3x-3/4=2x | | 12-7/a=-2 | | 3(-8)-8y=0 | | 36=-9/7x |